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Abstract Assessing the relationships between weather patterns and the likelihood of fire
occurrence in the Caribbean has not been as central to climate change research as in temperate
regions, due in part to the smaller extent of individual fires. However, the cumulative effect of
small frequent fires can shape large landscapes, and fire-prone ecosystems are abundant in the
tropics. Climate change has the potential to greatly expand fire-prone areas to moist and wet
tropical forests and grasslands that have been traditionally less fire-prone, and to extend and
create more temporal variability in fire seasons. We built a machine learning random forest
classifier to analyze the relationship between climatic, socio-economic, and fire history data
with fire occurrence and extent for the years 2003–2011 in Puerto Rico, nearly 35,000 fires.
Using classifiers based on climate measurements alone, we found that the climate space is a
reliable associate, if not a predictor, of fire occurrence and extent in this environment. We
found a strong relationship between occurrence and a change from average weather conditions,
and between extent and severity of weather conditions. The probability that the random forest
classifiers will rank a positive example higher than a negative example is 0.8–0.89 in the
classifiers for deciding if a fire occurs, and 0.64–0.69 in the classifiers for deciding if the fire is
greater than 5 ha. Future climate projections of extreme seasons indicate increased potential for
fire occurrence with larger extents.
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1 Introduction

Modeling fire likelihood and occurrence in tropical island systems is challenging due to the
complexity of fuels, climatic variability, anthropogenic influences, and lack of data on the
thousands of small fires that are characteristic of the region (Robbins et al. 2008). For similar
reasons tropical evergreen systems as a whole have traditionally been left out of large-scale
modeling efforts (Cochrane 2003). The major causes of wildfires in the Caribbean are
anthropogenic, resulting from unintentional ignitions and intentional burning for agricultural
or other reasons (Robbins et al. 2008). Certain sets of socio-economic factors such as
unemployment, livestock density, population density, and tourism rates, have been linked to
anthropogenic-caused wildfires in many areas (e.g., Ganteaume and Jappiot 2013; Oliveira
et al. 2012; Rodrigues et al. 2014), presumably through ignition rate. Although tropical fires
are generally smaller than temperate fires, an estimated 70% of global ignitions in a year occur
in these regions (Dwyer et al. 1998) and fire activity in some of the most sensitive ecosystems
in the tropics is increasing (van der Werf et al. 2008). With so many fires, a potential increase
in average extent would result in large increases in emissions from tropical regions, regional
emissions known to disproportionately affect global climate transiently (Forster et al. 2007).
However, future projections of fire behavior in the tropics are the most uncertain globally
(Krawchuk et al. 2009). These facts highlight the importance of studying wildfire dynamics in
the tropics.

Recent satellite data have shown fire occurrence and burned area are the largest in areas
such as the Caribbean with intermediate net primary production and precipitation, areas where
neither fuel amount or fire season are very constrained (Pausas and Ribeiro 2013). Fires
depend on three basic elements to occur: oxygen, fuel, and heat. Together, these components
comprise the three sides of the Bfire triangle^. Traditional fire danger or risk analysis relies on
established relationships between weather patterns and fuel moisture. However, the stochastic
and highly local nature of factors influencing fuel moisture, such as wind, exposure to sun,
humidity, etc., make large scale analysis and projections difficult and at times misleading.
During the summer months, fuel moisture levels are regularly sampled by state and federal fire
managers and influence local fire dangers ratings and allocation of management resources.
This analysis can provide valuable insight into potential fire behavior, but not its potential
occurrence. Furthermore, detailed analysis of fuel availability is not yet available in many (dry
or humid) areas of the Caribbean (Robbins et al. 2008), and an analysis of the mechanism of
fire in the humid areas of the tropics is not yet quantified, making typical fire indicators
ineffective (Taufik et al. 2017).

Our question is whether the likelihood of fire occurrence and its tendency to be large or
small can be accurately classified using available weather and social-economic data without
directly assessing fuels or fuel conditions. This allows for characterizing the likelihood of fire
in given weather and climate scenarios in a particular region with the assumption that fuels are
present and (due to weather conditions) flammable. The characterization furthers our under-
standing of drivers of fire in Caribbean ecosystems. While process-based models may be more
effective tools for predicting future fire behavior, statistical models, such as machine learning
models, are useful in identifying the most important factors controlling current behavior, and
gaining insight into how future climate might change fire behavior (Aldersley et al. 2011).
Such models can be the start to understanding how to modify existing process-based models
for success in the Caribbean. If process-based models are to be applied in the Caribbean, it
might be expected that they need to be modified to account for differing climate processes
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(Taufik et al. 2017) and a high amount of anthropogenic links to fire (Luo et al. 2017). In other
words, the fire regime is not strongly limited by lack of biomass fuel or ignition sources.

Decision tree methods have been used to analyze global and regional fire drivers in a
variety of settings as they take into account the nonlinearity of the interactions of drivers
(Argañaraz et al. 2015; Pourtaghi et al. 2016). The majority of these classifier models use
numerous socio-economic, biological, infrastructural, geographic, and climatic variables as
drivers, or predictors, of fire; many of which are complicated to calculate. We use random
forest (RF) decision trees (Breiman 2001) with a simple framework of predictors constructed
from daily minimum and maximum temperatures, precipitation, wind speed, recent fire
history, and a socio-economic indicator (unemployment) to understand the climate space in
which wildfire occurs and discuss implications of projected climate changes on the likelihood
of fire.

2 Methods

2.1 Study area and data

Puerto Rico is the smallest of the Greater Antilles Islands, located in the northeastern
Caribbean Sea. The main island is approximately 8900 km2 with a thin strip of coastal plains,
8–16 km wide, surrounding steep igneous upland. Orographic effects are a major control on
temperature and precipitation (Daly et al. 2003). While temperature is fairly consistent
temporarily and spatially, precipitation gradients are steep and highly varying (Fig. 1c–e).
Puerto Rico follows the Caribbean weather pattern created by the easterly trade winds from the
Atlantic Ocean with an early rainfall season from May through June and a late rainfall season
from August to November. The island-wide dry season is from January to April, which
corresponds with the fire season (Fig. 2a, d). The island has drier, more open forest in the
south, and wetter, more closed forest in the north, east, and in the central highlands. The
landscape is a complex matrix of wildlands, developed areas and agricultural lands (Gould
et al. 2008; Van Beusekom et al. 2014).

Puerto Rico has a population density of 438 persons/km2, similar to relatively urbanized
settings such as New Jersey. Sixteen percent of the island is defined as urban and 48% of the
island as sparsely populated rural, with the rest densely-populated rural (Martinuzzi et al.
2007). The island has legal divisions of 78 municipalities further broken into 901 barrios
ranging in area of 0.1 to 64 km2 (Fig. 1a). There is a large amount of wildland-urban interface,
a setting of high fire risk across the Caribbean (Robbins et al. 2008), the tropics (Cochrane
2003), and globally (Mercer and Prestemon 2005).

Paleo-ecological evidence shows that fire frequency in Puerto Rico increased with settle-
ment and fires now occur in humid areas that in pre-colonization had not been known to burn
(Burney et al. 1994). The majority of fires are of anthropogenic origin; in 2013–2014, 40% of
the fires occurred at night and were possibly somewhat intentional (Méndez-Tejeda et al.
2015). Small wildfires are common, with most fires too small to be seen with satellite data
(Robbins et al. 2008). Intense surveys through local barrio managers recorded 34,628 fires
from January 1, 2003 to December 31, 2011, 9 years, with burn extent data recorded for 92%
of 8 years of these fires (81% in totality, no extent was recorded for 2008) (Figs. 1a, b and 2a,
b). This is the first large historical fire data set that has been analyzed in Puerto Rico.
Approximately 5% of the fires with recorded extents in this period were more than 5 ha
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Fig. 1 Map of Puerto Rico with (a) barrio outlines and recorded fire occurrences in each barrio (location
randomly placed inside the barrio) 2003–2011; (b) number of these fires recorded as greater than 5 ha; (c) mean
daily maximum temperature by barrio 2002–2011; (d) mean daily minimum temperature by barrio 2002–2011;
(e) mean daily precipitation by barrio 2002–2011; (f) mean monthly unemployment rate by municipality 2002–
2011; and (g) mean daily wind speed by barrio 2009–2011
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(0.05 km2). The median size was 0.4 ha and the maximum size was 1100 ha. Data of fire
occurrence and extent were collocated by barrio, not by precise latitude and longitude.

Because the fire data is by barrio, data used for predictors in the RF classifiers were
summarized to barrios. Daily maximum and minimum temperature and precipitation are
recorded at National Weather Service Cooperative Observer stations and interpolated across
the island as daily climate surfaces from 2002 to 2011, with climatically aided interpolation
(CAI; Willmott and Robeson 1995) using the Parameter-Elevation Regressions on Indepen-
dent Slopes Model (PRISM; Daly et al. 2003) as the basis of CAI (Henareh Khalyani et al.
2016). We use unemployment as a predictor indicating socio-economic conditions as it is
reported frequently and spatially. Mean unemployment rate in Puerto Rico over 2002–2011
was 13%, more than 6% higher than the USA’s unemployment rate average (http://www.bls.
gov/). Unemployment rate is reported by municipality per month; we used it here interpolated
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Fig. 2 Time series and 1 month moving average (MAV) (shown on different scales on right side axes) for (a)
total recorded daily fire occurrences; (b) total recorded fires >5 ha (there no fire size data for 2008); (c) barrio
mean daily maximum and minimum temperature; (d) barrio mean daily precipitation; (e) barrio mean monthly
unemployment rate; and (f) barrio mean daily wind speed (starts in 2009)
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to weekly averages (Figs. 1f and 2e). Daily wind speed is not measured on the interior of the
island, but is modeled by the National Digital Forecast Database for eight 3-h values of wind
speed daily spatially distributed over the island since 2009 (http://www.nws.noaa.gov/ndfd/).
Model outputs were averaged for daily values of wind speed (Figs. 1g and 2f).

2.2 Classifiers

We use RF classifier models: non-parametric supervised learning to create a number of
decision trees each based on a random sample of the data; a method widely successful in
classifier problems (Fernández-Delgado et al. 2014). The fraction of individual trees assigning
the set of inputted Bpredictors^ to the positive class is the outputted probability the set is in that
class, and a threshold is applied such that if the probability is above that threshold, the
‘prediction’ is the positive class. Data were pre-processed for the most potentially useful
climatic and socio-economic predictors, then put into RF classifiers predicting classes for the
two problems of (1) occurrence; for a day in a barrio with a set of predictors (the conditions) is
there Bno fire occurrence or yes fire occurrence?^; and (2) extent; given a fire on a day in a
barrio with a set of predictors is there a Bsmall fire or big fire?^, for the 3287 days of record
(2003–2011) and the 901 barrios. The data available for predictors were climate data and
socio-economic data, as discussed in the previous section, as well as fire history data. Positive
class is considered fire occurrence or a big fire. Each RF classifier was trained on up to 80% of
the data available, and 20% was reserved for testing the classifier.

2.2.1 Data pre-processing

Predictors summarized by barrios means barrios of differing sizes will result in
different resolutions to the predictors in each barrio; this problem is not too
distressing. However, more egregiously, it will also mean fire ignitions have more
potential area within which to occur for larger barrios, thus predictions in the RF
classifier could be biased toward conditions in the largest barrios. To mediate biases,
we used the middle two quartiles of barrio sizes for the fire ignition; five to 13 km2

in size. There was no correlation between number of fire occurrences over the period
of record and barrio size in the full or reduced dataset. The raw data possibility of a
fire occurring in a barrio on a day was approximately the same in the full data set as
in the data set reduced by barrio size, a 1% chance. For the fire extent problem, the
smallest barrios were removed (those <1.6 km2) as those are densely populated city-
barrios and may be not indicative of a wildfire.

Two sets of potential predictors were then constructed. The first set was daily value
summarized by barrio for the following attributes: maximum, minimum, and diurnal range
temperature; precipitation and wind speed; and weekly unemployment rate. These attributes
were then expanded into sets of mean values aggregated prior to a day, up until 24 weeks
before the day of a fire, or:

Axbd ¼ ∑i¼day d
i¼day d−xaib= xþ 1ð Þ with 0 < x < 24*7; ð1Þ

for each barrio b, each day d in years 2003–2011, and each weather or socio-economic attribute
a. The upper limit of 24 weeks was chosen as it is near 6 months and considered representative
of long-term behavior of the attribute. These predictors (A) are termed ‘absolute predictors’. The
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second set of predictors (R), termed ‘relative predictors’, was absolute predictors divided by the
average daily value over 2002–2011 of each attribute in each barrio, or:

Rxbd ¼ ∑i¼day d
i¼day daib= xþ1ð Þ

� ��

∑i¼Dec 31;2011
i¼Jan 1;2002 aib= 3287ð Þð Þ

with 0 < x < 24*7: ð2Þ

Note that for a = unemployment, only weekly values are used so 0 < x < 24 in both
equations and the denominator in Eq. 2 is divided by 120 instead of 3652. These two sets of
potential predictors were tested for the most likely Btop aggregate^ predictor out of the range
of aggregate means for each attribute, and that one was used in the final RF classifier. This was
done by separating Abd and Rbd into days with and without fire occurrence, and big and small
fires, and testing which length of aggregation made the largest separation for the groups.
Separation is defined as variance between the two groups divided by variance within the
groups. This is the F-statistic used in ANOVA 1-way test where a large statistic rejects the null
that the two groups are drawn from populations with the same mean values; however, we did
not run this test as we cannot assert independence among the groups because of spatial
correlation possibilities (Legendre 1993). Final classifiers were run with each attribute con-
tributing either absolute or relative predictors depending on group separation results, with the
top aggregate mean predictor, and the ‘daily’ observations A1bd or R1bd (since we do not know
if the event happened before or after the A0bd or R0bd observations happened; this might be
critical for a precipitation observation). A final of predictor describing fire history was added to
each problem. This attribute is the area of the barrio multiplied by the number of days since a
fire was last detected in it.

For the extent problem, the classes of big and small fires had to be defined. Most fires in
Puerto Rico are too small to be considered large fires in other ecosystem models (Birch et al.
2015; Fang et al. 2015). Compounding the problem, the fire sizes are often reported as rounded
values, so computing a cluster analysis for optimal classes would be impossible (e.g.; Yu et al.
2011). We defined classes by again looking at group separation balanced with considerations
that enough cases would be in each class to build a reasonable classifier. Big fire size was
defined as any fire more than 5 ha, with small fires defined as the complementary set.
Arranging the problem such that an unpredicted middle class existed between big and small
was tested, but results were not encouraging enough to warrant this removal of data, as our
goal was to characterize the full effect (conclusive or not) of climate space on fire behavior.
The raw data possibility of a fire extent greater than 5 ha was 5%.

2.2.2 Data imbalance

For both problems, classes were highly imbalanced. Large class imbalance is known to cause
problems in machine learning due to the minority class concepts being underrepresented (He
and Garcia 2009). Randomly over-sampling the minority class overfits the minority class, and
under-sampling the majority class loses information in the majority class. We achieved best
results by synthesizing a balanced data set using the method of ROSE (random over-sampling
examples; Menardi and Torelli 2014), where new data is made in the neighborhoods of
randomly chosen existing minority class data (i.e., the members of the estimated conditional
density underlying the original data) and the majority class is kept as is until equal
class balance. The size of the neighborhoods is tuned to achieve a data set that results
in a good RF classifier.
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2.2.3 Classifier fitting

Binary classification models were trained on the balanced data with 500 trees, by which point
there are no significant gains in performance by increasing the number of trees. We evaluated
classifier performance with the test data set (20% of the original data held out, thus imbal-
anced) and the metric of area under the receiver operating curve (AUC). The receiver operating
curve (ROC) is the plot of true positive rate against one minus true negative rate; the area under
the ROC is independent of the threshold probability used for class assignment. An AUC value
of 0.5 indicates classifier performance is no better than random, whereas an AUC of 1.0 is
perfect. The AUC is equivalent to the probability that a random positive case will be assigned a
higher probability than a random negative case. This is considered one of the best metrics for
unbalanced problems (Chawla 2005).

Importance measures on the predictors in the training set were computed by permuting the
values of each feature and measuring how much the permutation decreased the accuracy of the
balanced training classifier. However, two completely correlated predictors will both be
deemed important even though one could be removed from the classifier, so predictor
importance was assessed by leaving out subsets of correlated predictors (Gregorutti et al.
2017). Furthermore, predictor merit was also assessed by building classifiers with different sets
of predictors and examining the resulting classifier AUC with the training data. These
predictor sets were: all data available, all climate and socio-economic data (top aggregates
and daily values, no fire history), all climate data, all top aggregate data, and climate top
aggregate data. Because wind data is only available for three of the years of data, including it
as a predictor necessitates a loss of information for the other predictors. Classifiers were run for
the entire data set without wind data and for the 3 years of data including wind data.

Visual comparison between predicted responses and the actual responses of the test
set were made to see what each attributes response was, and how well the classifier
represented the test set. Response curves are plots of partial dependence where the
one predictor is varied over its range while the other predictors are held constant at
their means. The probability of a positive outputted class is plotted for the classifier
predicted response, and the true class is plotted for the data actual response.

3 Results

3.1 Data pre-processing for top aggregate predictors

Relative predictors (Eq. 2) achieved better separation between the group’s positive fire
occurrence and negative fire occurrence than did absolute predictors (Eq. 1). Con-
versely, in the extent problem, absolute predictors achieved better separation in
positive large size and negative large size (small size). The top aggregates in sepa-
ration of the occurrence problem were relative means of the previous 12 weeks for
maximum temperature, 7 weeks for minimum temperature, 2.5 weeks for diurnal
temperature range, 11 weeks for precipitation and wind speed, and 14 weeks for
unemployment. The top aggregates in separation of the extent problem were absolute
means of the previous >24 weeks for maximum and minimum temperature (the
longest aggregate tested), 1 week for diurnal temperature range and unemployment,
9 weeks for precipitation, and 2 days for wind speed.
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3.2 Classifiers

Importance measure experiments rated the attributes of top aggregate and daily precipitation as
the most important predictors for each problem (relative predictors for the occurrence problem
and absolute predictors for the extent problem). In the occurrence problem, after precipitation,
top aggregate minimum temperature and fire history were important. In the extent problem,
after precipitation, the top aggregate maximum temperature and wind speed were important.

The AUC metrics evaluated on the test data set (data not used in any way to train the
classifiers) for the different classifiers are shown in Table 1. The classifiers using the reduced

Table 1 Random forest (RF) classifiers for fire occurrence and extent problems using different sets of predictors
and the resulting AUC (area under the receiver operating curve) values

Problem Years
Wind 

Available

Data Used

AUCClimate Socio-economic Fire 
History

TAgg1 Daily TAgg1 Daily

Fire

Occurrence

2003-2011 no

0.89

0.87

0.86

0.79

0.79

2009-2011 yes

0.83

0.80

0.81

0.78

0.79

Fire

Extent

2003-2011 no

0.67

0.66

0.66

0.67

0.64

2009-2011 yes

0.65

0.68

0.68

0.68

0.69

1 TAgg is an abbreviation for Top Aggregate for each attribute: the mean of the attribute over a specific number of
successive days prior that achieves the best separation between the two classes for each problem
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data 2009–2011 (containing wind speed) are less stable that those with data 2002–2011,
depending on the seed set for random number generation (Matsumoto and Nishimura 1998),
especially in the case of the smaller extent problem. We show AUC values from typical
classifiers out of multiple seed selections (Table 1). The AUC values for the fire occurrence
classifiers characterize very good classifiers with an 80–90% chance of assigning a day in a
barrio that has a fire as being more at risk than a day in a barrio that does not have a fire. The
extent problem is more challenging, but the addition of wind data may be making the fire
extent more predictable. Still, all classifiers are substantially better than random chance. The
full classifiers with all available data have the highest AUC value in most of the problems, but
the classifiers using only the climate data do comparably. We note as a side test, that the
problems run with the opposite predictors, absolute predictors for the occurrence problem and
relative predictors for the extent problem, achieved smaller AUC values as expected.

Smoothed lines of the scattered points of predicted and actual responses of the attributes are
shown in Fig. 3 for the classifiers using all the predictors for the longest period available,
2003–2011, as the longer period classifier is considered a more reliable summary of fire
behavior. Wind attribute responses are shown from the shorter period classifier over which
wind was available. The predicted responses are probabilities of belonging to the positive class
(again, a fire occurrence or a big fire) plotted against the value of the attribute, and the actual
responses are the class plotted against the value of the attribute. We use local regression
smoothing (LOESS) to turn both of these scatterplots into a curve of response for clarity. The
predicted responses are fairly stable with different seed settings, but the actual responses
coming from the smaller training set are less so; again the issue is worse with the smaller extent
problem. Again, we show values from typical classifiers out of multiple seed selections.

4 Discussion

The AUCmetric is very good for the occurrence problem with all RF classifiers, but is especially
remarkable that such good RF classifiers for this Caribbean fire environment were built primarily
off climate attribute predictors alone (Table 1). In other studies for regions with fewer anthropo-
genic ignition sources, fire classifiers depended more on predictors specifically describing
humidity and fuel availability (California and western USA: Parisien and Moritz 2009; Colorado
andWyoming: West et al. 2015). Fire classifiers in other regions with a similarly large amount of
wildland-urban interface depended more on predictors describing socio-economic conditions
(Florida: Mercer and Prestemon 2005; Mediterranean Europe: Oliveira et al. 2012). Here,
unemployment did not decide the fire behavior well, and if anything, low unemployment was
associated with more fires, contrary to other RF classifiers with socio-economic indicators. One
key difference in the Puerto Rico and the other study areas is the extremely large number of
ignitions in the Puerto Rico (0.43 fires ignited/km2/year versus 0.02–0.03 fires ignited/km2/year
in theMediterranean).We hypothesize that the fire regime of our study area is not ignition-limited
enough for the socio-economic indictor to exert influence on the fire regime, following the theory
of Bradstock (2010) of limiting ‘switches’ controlling fire activity. The Bignition switch^ not
being a factor in Puerto Rico does not imply it is not a factor in other places in the Caribbean. A
recent study on another Caribbean area with large wildland-urban interface but lower ignition rate
(Columbian Caribbean 0.04 fires ignited/km2/year: Hoyos et al. 2017) found climate attribute
predictors much more important than socio-economic conditions, but fire ignitions still increased
with socio-economic degradation.
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The usefulness of the long-period top aggregate means in the occurrence problem (2–
3 months; Fig. 3a) suggests the analysis is determining the conditions needed for fire season,
most importantly, a period of time, which is relatively drier than the rest of the year. The wetter,
more closed forest in the north and east (Van Beusekom et al. 2014) does not have as
dichotomous dry and wet seasons and thus the fire season is not as long (or non-existent,
Fig. 1a). However, classifying fires with relative values of precipitation instead of absolute
values is possibly more successful in identifying the fires on the fringes of forests or grasslands
that are typically humid but very dry at times (Fig. 1a, e), when we do not have specific fuel
data (Turco et al. 2017). The predictors are measuring humidity, which does affect fine fuels,
by proxy. Cool and dry conditions, as well as greater diurnal fluxes indicate low humidity. The
occurrence of a fire on a specific day in a specific location during fire season is driven by the
low relative precipitation that day, as seen in the high importance of daily precipitation and in
the reduction of AUC from the RF classifier using all climate data to just top aggregate climate

a

b

Fig. 3 Normalized local regression smoothed lines of predicted responses (predicted class plotted against
predictor value) and actual responses for random forest (RF) classifier results using available data 2003–2011.
Plot column headers give mean aggregate length (in weeks (w) or days (d)) for the top aggregates in class
separation for each attribute of maximum temperature (tmax), minimum temperature (tmin), precipitation (prec),
diurnal temperature range (tdiu), unemployment (uemp), wind speed (wspd). Suffixes of B1^ are for the daily
predictors consisting of the mean of the day and the day before due to unknown fire event time of day. The fire
history attribute is days prior without fire multiplied by barrio area (no_fire). Low (L) to high (H) value of each
predictor is on the x-axis. Figure a) shows the responses in the occurrence problem; and b) the responses in the
extent problem. The wind predictor responses are from the reduced data classifiers with 3 years of data only
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data (Table 1). While a recent fire is a good predictor for another fire (thus identifying the
barrio as in the fire season temporally), characterizing the weather for fire season, we can build
a RF classifier almost as good (Table 1).

The difference in behavior of the RF classifier sets of the two problems, occurrence and
extent, can be seen most obviously in the predicted responses of the top aggregates and daily
maximum and minimum temperatures; a fire is more likely to occur at a time when the
temperature has been relatively colder for several months (Fig. 3a), in the middle of the winter
dry season, but more likely to be large if the absolute temperature of the barrio for the last half
of the year is fairly warm (Fig. 3b). Absolute dryness of the dry season is the best predictor of
larger fires, but a moderate amount of wind in the few days before may also be a factor. The
largest winds may be associated with rain events, and therefore fire-reducing.

The causes of the lower performance in the extent problem are clear in the actual responses
of the test set, which differ from the predicted responses notably in top aggregate maximum
and diurnal temperature, and daily precipitation (Fig. 3b). The extent problem on the shorter
time period, with wind, does better (Table 1) but this is due to the test set. The two RF
classifiers are not substantially different in predicted responses for the shared attributes. This
illustrates one of the difficulties with assessing RF classifier performance in randomly chosen
test sets, which are necessarily smaller than the training set; and furthermore, with an
imbalanced problem, the minority class will have very few test cases. Thus, unless the class
space is very homogeneous, it is likely to get a few atypical cases in the test set minority class,
greatly affecting the results. Fire growth is thought to be a self-organized criticality, so any
success in classifying the size between small and bigger-small fires, points to a more orderly
than normal system (Malamud et al. 1998). Furthermore, wind direction aligned with topog-
raphy along with fire suppression response dictate fire spread (Finney et al. 2011); these are all
complex relationships we cannot account for with the RF classifiers.

The RF classifiers give evidence that with the current ignition sources, if the
system is experiencing fire weather, there will be a fire. Fire season may be driven
more by the relative weather conditions than the absolute weather, while absolute
values may control the fire extent. Thus, the likelihood of fire occurrences and fire
size is expected to increase under a more extreme dry season in this region. Regional
climate projections encompassing Puerto Rico agree on a temperature increase for all
seasons by the middle to end of the century, but models show precipitation changes of
a drier wet season (Hall et al. 2013; Karmalkar et al. 2013), drier wet and dry seasons
(Campbell et al. 2011), and a wetter wet season (Angeles et al. 2007). Downscaling
of projections specifically to the island show high variability in outcomes based
model selection and spatial variability related to orographic effects, with more extreme
temperature increases than regional projections and increased dryness annually (Van
Beusekom et al. 2016; Henareh Khalyani et al. 2016). Our RF classifiers suggest the
temperature and annual dryness increases would make fires greater than 5 ha more
likely, and fire occurrences would increase when relative dryness increases, e.g., a
wetter wet season or drier dry season.

5 Conclusions

Global climate change has been projected to intensify behavior of fire in some areas and not
others, with much uncertainty surrounding the projections (Krawchuk et al. 2009; Park
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Williams and Abatzoglou 2016). Wildfire in tropical island systems, which are often densely
populated and have a complex matrix of urban and rural land covers and uses, has effects on
air quality, human health, greenhouse gas emissions, species distributions, ecosystem services
and conservation. Understanding how the spatial and temporal distribution of fire occurrence
and extent may change as climate changes requires an understanding of what specific climate
variables best characterize fire occurrence and extent. In this study, with the use of machine
learning classifiers and the data in Puerto Rico, we found that climatic variables alone can
define a fire season in a location, with current relative conditions contributing to an increased
likelihood of fire occurrence and current absolute conditions to an increased likelihood of
larger size. Importantly, Puerto Rico exemplifies tropical island areas of intermediate net
primary productivity and precipitation, and gives insights on how climate space may shape
these fire regimes in the future.
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